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ordered, separated threads (e.g., B in Figure Id) are followed by 
irregular regions with partial fusions of the threads (e.g., A in 
Figure Id). 

The primary molecular binding forces between two threads are 
presumably hydrogen-bond chains between carboxyl protons and 
carboxylate anions of neighboring fibers (Figure 2). A similar 
situation has been encountered in crystals of tartaric acid salts: 
they are most stable if hydrogen-bonded water molecules and 
counterions (H+, NH4

+) are bound together with one alkali-metal 
ion,8,9 Pasteur's sodium ammonium tartrate hydrate being the most 
famous example.8 

Separated threads or sheets of bilayers have also been observed 
in cubic and hexagonal phases,10 myelin figures,11'12 or multiwalled 
vesicles12 consisting of double-chain amphiphiles in aqueous 
emulsions. None of these materials form complex shapes and 
isolated bodies such as shown in Figure la. It is presumably the 
relatively good water solubility of the amphiphiles la,b in micellar 
form that allows rapid interfiber associations.2 

As usual with ultrathin micellar fibers, only the pure enan-
tiomers of la,b produce such aggregates with large surfaces. The 
corresponding racemate rather forms smooth planar bilayer 
platelets under the same conditions7 and precipitates from aqueous 
solution ("chiral bilayer effect"'). 
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This paper describes the synthesis of surface-activated polym­
erized liposomes (1) derived from l,2-bis[12-(lipoyloxy)dodeca-
noyl]-sn-glycero-3-phosphocholine (2) and l,2-bis[12-(lipoyl-
oxy)dodecanoyl]-i'/j-glycero-3-phospho-Af-(3-mercapto-
propionyl)ethanolamine (3). Such liposomes, which bear activated 
sites that are locked into a random distribution on the membrane 
surface, have a surface density that can be controlled by adjusting 
the molar ratio of 2/3 that is used, and reversibly bind organic 
thiols, should provide a unique opportunity for probing and ex­
ploiting ligand-receptor recognition at the supramolecular level. 

Understanding how biological membranes recognize and re­
spond to extracellular signals, and learning how to control such 
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recognition, represent two of the most important challenges 
presently facing chemists and biologists. At the supramolecular 
level, the key issues extend beyond the specific chemistries involved; 
they relate to questions of valency, proximity, and cooperativity 
among multiple pairs of ligands and receptors. One may ask, 
for example, how many ligand-receptor bonds are necessary to 
"switch on" a specific membrane function? What are the spatial 
requirements that must be met? How does ligand-receptor co­
operativity affect the overall "supramolecular recognition" process 
(Figure 1)? 

Conceptually, cross-linked polymerized liposomes, possessing 
uniform, highly stable and "biomembrane-like" surfaces, represent 
attractive probes for investigating the above questions.3 In 
particular, the ability to control the spatial availability of pendant 
molecules, by adjusting their surface density, and by altering the 
curvature of the liposomal surface to which they are attached (i.e., 
by changing the vesicle's size), should allow one to study mul­
tivalent binding in a controlled manner. This paper reports the 
synthesis of a unique class of polymerized liposomes that have 
been specifically designed for this purpose. Work that will be 
reported elsewhere will describe the use of such liposomes in 
defining the supramolecular recognition features of the Arg-
Gly-Asp (RGD) moiety toward cell surface receptors.45 

Using methods similar to those previously described, 2 was 
converted into its corresponding ethanolamine via phospholipase 
D catalyzed exchange.6'7 Subsequent treatment with 1.5 equiv 
of yV-succinimidyl 3-(2-pyridyldithio)propionate in chloroform and 
deprotection with 20 equiv of dithiothreitol in methanol afforded 
3.8 

Surface pressure-area isotherm analysis of monolayers produced 
from 2 and 3, at the air-water interface, establish their miscibility.9 

For an ideally miscible or completely immiscible monolayer, the 
mean area per molecule, Am (at a specific surface pressure), is 
defined by the mole fraction of lipid employed, Xh and by the 
partial molar areas of each lipid (Ax and A2, respectively), ac­
cording to eq 1. Any deviation from linearity establishes that 

An = X1A^(I-X1)A2 (D 
the pair of surfactants is nonideally miscible. By use of the phase 
rule of Defay and Crisp, it is also possible to distinguish between 
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Figure 1. Stylized illustration of a supramolecular recognition event; i.e., 
the formation of a trivaient ligand-receptor complex at a biomembrane 
surface, held together via hydrogen bonding, ion pairing, and/or hydro­
phobic interactions. 

ideal miscibility and complete immiscibility.10'" Specifically, for 
a completely immiscible two-component monolayer, the collapse 
points are equal to those of the pure components; for a completely 
miscible mixture, the collapse point is linearly related to the mole 
fraction of lipid used (eq 2). Here, Pm equals the collapse pressure 

Pn = XxP,+ (\-Xx)P2 (2) 

of the mixed monolayer, and Px and P2 represent the collapse 
pressures for the pure lipids. On the basis of the Am values 
observed at 20 dyn/cm and the variation in the collapse pressures 
for these mixed monolayers (Figure 2), it is evident that 2 and 
3 are nonideally miscible. Since both lipids bear the same po-
lymerizable moiety, mixtures of 2 and 3 must lead to co-
polymerized membranes having a random distribution. 

Large unilamellar vesicles (ca. 1000-A diameter; 4.8 mM) were 
prepared by using a molar ratio of 2/3 of 9/1 via standard ex­
trusion procedures (0.1 nm Nucleopore membranes)12 in 10 mM 
borate buffer (140 mM NaCl, 2 mM NaN3, pH 6.4). Polym­
erization was initiated by raising the pH to 8.4 and was complete 
after 6 h, as judged by the loss of lipid monomer (TLC, UV).13 

After polymerization, the pH was returned to 6.4 for subsequent 
reactions. Mean external diameters that were observed for the 
polymerized liposomes were similar to their nonpolymerized 
precursors (dynamic light scattering, Nicomp 270). Reaction with 
5 equiv of 2,2'-dithiodipyridine afforded a surface-activated po­
lymerized liposomal dispersion, 1, containing 0.84 ± 0.06 mol of 
2-pyridyldithio groups/mol of 3.M Similar to homopolymerized 
liposomes of 2, but unlike homopolymerized liposomes produced 
from 1 -palmitoyl-2- [ 12-(lipoyloxy)dodecanoyl] -jn-glycero-3-
phosphocholine,6 1 is completely insoluble in CHCl3 and 
CHC13/CH30H (1 / 1 , v/v). These solubility properties infer that 
1 is a cross-linked liposome. 

In an effort to distinquish between activated sites present on 
the inner- and outer-monolayer leaflet, a dispersion of 1 was 
treated with 5 equiv of the polymeric reducing agent, dihydro-
lipoamide-dextran (DHLA-dextran).15,16 A maximum of ca. 45% 
of the liposomal-bound 2-mercaptopyridine was released after a 
total of 1.5 h. Similar cleavage experiments carried out with DTT 
released ca. 80% of the bound 2-mercaptopyridine. If it is assumed 
that DHLA-dextran cannot "reach across" a lipid bilayer,15 these 
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Figure 2. (A) Plot of mean area per molecule (20 dyn/cm, 25 0C) as 
a function of the mole fraction of 2 in mixed monolayers of 2 plus 3. A 
theoretical plot expected for a completely immiscible or ideally miscible 
monolayer (•••) is included. (B) Plot of collapse pressure as a function 
of lipid composition. Isotherms were recorded at 25 °C over a subphase 
whose pH was 8.5 (10 mM borate buffer). 

results infer that the mercaptopyridine groups are distributed 
nearly evenly between the inner and outer monolayers. 

In model studies, reaction of 1 with 1.1 equiv of l-thio-/3-D-
galactopyranose (48 h, 23 0C, pH 5.5) resulted in ca. 50% sub­
stitution for 2-mercaptopyridine (analyzed by released 2-
mercaptopyridine). Subsequent treatment with 5 equiv of DTT 
(pH 8.0) for 8 h released 100% of the bound sugar.17 These 
results demonstrate that the covalent attachment of this sugar 
to 1 is completely reversible and occurs exclusively and quanti­
tatively at the activated sites. The ability to bind and detach 
ligands or receptors from 1 should make it particularly well-suited 
for mechanistic studies, e.g., for use in affinity labeling experi­
ments. 

Polymerized liposomes, of the type reported herein, should prove 
valuable in defining the recognizability of pendant molecules at 
the supramolecular level and may also provide a means for 
modulating their bioactivity. The fact that closely related, hom­
opolymerized liposomes of 2 have been shown to be biocompatible, 
as judged by their lack of thrombogenicity18 and toxicity,19 together 
with their potential for being fully biodegraded, suggests that 1 
may find immediate practical use, e.g., as a novel carrier of 
appended drugs and antigens. Studies that are now in progress 
are being directed toward biomechanistic and medical applications 
of these and related phospholipid surfaces. 
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